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Rayleigh-Taylor unstable flames: The effect of two-mode coupling
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In the classical Rayleigh-Taylor (RT) instability, initial conditions are forgotten and the
growth of the mixing layer becomes self-similar when short wavelength modes couple to
generate longer wavelength modes. In this paper, we explore how adding a reaction at
the unstable interface affects this inverse cascade in wavenumber (“inverse k-cascade”).
We simulate a 2D, Boussinesq, premixed model flame perturbed by a large amplitude
primary mode (k1) and a smaller amplitude secondary mode (k2). Early on, the modes are
uncoupled and the flame propagates as a metastable traveling wave. Once the secondary
mode has grown large enough, the modes couple. The traveling wave is destabilized and
the flame front bubbles rapidly grow. This inverse k-cascade, driven by two-mode coupling,
ultimately generates a long wavelength mode with wavenumber GCD(k1, k2), where GCD
is the greatest common divisor. We identify five distinct flame growth solution types and
show that the flame may stall, develop coherent pulsations, or even become a metastable
traveling wave again depending on GCD(k1, k2). Finally, we compare our results with
two-mode coupling in ablative and classical RT and show that all three systems may follow
the same mode coupling dynamics.
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I. INTRODUCTION

The classical Rayleigh-Taylor (RT) instability [1,2] occurs when a heavy fluid is accelerated
into a light fluid. This acceleration may be due to gravity or even the centrifugal force. The RT
instability is very well studied [3–15] and appears in many places from the Crab Nebula [16,17] to
Earth’s ionosphere [18]. In some important applications, there is an additional twist: a reaction at
the interface between the heavy and light fluids. For example, the speed of thermonuclear flames
in Type Ia supernovae is increased by the RT instability [19–32]. Here on Earth, engineers seek to
improve the efficiency of aviation gas turbine engines by using the RT instability to speed up fuel
consumption [33–41].

One characteristic feature of classical RT is that initial conditions are forgotten as the growth of
the mixing layer becomes self-similar. Memory is lost when long wavelength modes are generated
by the coupling of short wavelength modes (“bubble merger”) instead of growing from their own
initial conditions (“bubble competition”) [3,42–54]. Many generations of bubble merger generate
an inverse k-cascade in wavenumber space as bubbles grow from small to large. In this paper, we
explore how the addition of a reaction affects the bubble merger process.

The development of long wavelength modes in reactive RT has never been explicitly studied.
Previous work has focused on the long-term development of the instability [26,55] and on measuring
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properties like the flame speed and the flame width [19–30]. Generally, we might expect bubble
merger in reactive RT to resemble bubble merger in either classical RT or ablative RT. In both
cases, the dominant modal interaction is two-mode coupling; we expect this also to be the case
for reactive RT. In classical RT, the Haan/Ofer model predicts that two short wavelength modes
will couple to generate a new long wavelength mode with wavenumber knew = |k1 − k2| [44,48,50].
In ablative RT, Xin’s study [56] of two-mode coupling produced a surprising result: a new mode
with λnew = LCM(λ1, λ2), where LCM is the least common multiple. Do two-mode interactions in
reactive RT more closely resemble those of classical RT or ablative RT?

In this paper, we investigate two-mode coupling for reactive RT using numerical simulations.
Given that this topic is unexplored, we begin by answering some basic questions: Can two-mode
coupling produce long wavelength modes? Which long wavelength modes are generated? What
happens to the flame physically during the inverse k-cascade? Ultimately, we will show that reactive
RT follows a similar coupling dynamic to the ablative RT, but that this seemingly strange mode
coupling dynamic can emerge from the Haan/Ofer model.

II. NUMERICAL METHODOLOGY

In this study, we take a parameter study approach. We reduce computational expense and increase
our exploration space by making two major simplifications: the Boussinesq approximation and a
model reaction.

The Boussinesq approximation assumes subsonic flows with small density variations [57]. For
flames, it requires the Atwood number of the system, At = (ρ0 − ρ1)/(ρ0 + ρ1), to be much
less than 1. Here, ρ0 is the density of the fuel and ρ1 is the density of the ash. By using the
Boussinesq approximation, we remove other instabilities (e.g., the Landau-Darrieus instability)
from the problem and focus on the effects of the Rayleigh-Taylor instability.

The second important simplification is the use of a model reaction term, R(T ), instead of a
realistic chemical reaction network. The reaction progress variable T (temperature) tracks the
transformation of fluid from unburnt fuel (T = 0) to burnt ashes (T = 1) and represents the amount
of energy released from the reaction to the flow [58]. We adopted R(T ) = 2γ T 2(1 − T ), a model
reaction used in our previous studies of Rayleigh-Taylor unstable flames [28–30,59]. This model
reaction has a laminar solution with characteristic flame width δ and laminar flame speed so [60].
Using the thermal diffusivity κ and the laminar reaction rate γ , we can construct the laminar flame
width δ = √

κ/γ and the laminar flame speed so = √
γ κ . The fluid equations, nondimensionalized

by δ and so, are
Du
Dt

= −
(

1

ρ0

)
∇p + GT + Pr∇2u, (1)

DT

Dt
= ∇2T + 2T 2(1 − T ), (2)

and ∇ · u = 0. G = g(�ρ/ρ0)(δ/s2
0) is the nondimensionalized gravity, Pr = ν/κ is the Prandtl

number, and �ρ is the density jump across the flame front. We set G = 4 and Pr = 1 for all
simulations in order to be within the range of values considered by previous work [21,22].

We chose 2D simulations because they are less computationally expensive than 3D, allowing us
to probe more parameter space. Does this expedient choice make our simulations too physically
unrealistic to be useful? It depends on what we study. Here, we investigate mode coupling and
phenomenological solution types. We expect our 2D results to have qualitative counterparts in 3D
because, like in classical RT, the inverse cascade in k-space is driven by the physical merger of
bubbles, not by turbulence. The physical merger of bubbles is qualitatively similar in 2D and 3D.
Quantitative differences are due to the differences between 2D and 3D bubbles and include different
drag and mass coefficients, a higher asymptotic velocity for 3D bubbles, and tighter packing and
more elongation of 3D bubbles [51]. General differences between 2D and 3D classical RT are
reviewed by Zhou [10].
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To solve the fluid equations, we ran direct numerical simulations using Nek5000, an open-source
spectral element CFD code [61]. Our simulations have a physical size of 2048 × 9216 nondimen-
sionalized units, spanned by 512 × 2304 elements with a spectral order of N = 9 (see Appendix A
for resolution tests). Periodic boundary conditions were imposed in the x-direction. Simulating a
tall box ensured that the flame stayed well away from the top and bottom boundaries during its
evolution. The velocity field was initialized at 0 and was held at 0 on both the top and bottom
boundaries. The temperature was constrained to be 0 (fuel) at the top boundary and 1 (ash) at the
bottom boundary. The flame front starts in the middle of the box (y0 = 4608) and propagates upward
against gravity.

We consider the coupling between a large amplitude primary mode and a small amplitude
secondary mode. Both modes are sinusoidal. Initially, the amplitude of the flame front’s deviation
from flat is

h(x) = A1 sin

(
2πk1x

xmax

)
+ A2 sin

(
2πk2x

xmax

)
, (3)

where A1 (A2) and k1 (k2) are the amplitude and wavenumber of the primary (secondary) pertur-
bation, and xmax = 2048 is the box width. A1 = 1 and k1 = 128 for all simulations. A2 = 0.001
for most simulations and k2 ranges from 1 to 224. In addition, we explicitly consider the effect
of numerical multimode noise in our simulations. For a discussion, see Appendix A. The initial
temperature profile is T (x, y) = 0.5{1 − tanh[(y − y0 + h(x))/2]}. For movies of the temperature
field for all simulations, see the Supplemental Material [62].

III. RESULTS

To investigate how long wavelength modes are generated by two-mode coupling in reactive RT,
we define two stages of flame evolution, Early and Late, depending on whether or not the primary
and secondary modes are coupled. During the Early Stage, the primary perturbation grows and
then stabilizes into a traveling wave. The Late Stage begins when the traveling wave is disrupted
by the growing secondary perturbation (or by numerical multimode noise) and mode coupling
drives an inverse k-cascade toward long wavelengths. We explore the flame’s physical behavior
during the inverse k-cascade and show that the cascade ultimately generates a dominant mode
with wavenumber GCD(k1, k2). Finally, we compare two-mode coupling in reactive, ablative, and
classical RT.

A. Early Stage Flame Evolution

We begin by exploring how the primary and secondary modes grow independently during the
earliest stages of flame evolution.

The flame begins as a slightly perturbed sine wave dominated by the primary perturbation. The
primary perturbation grows exponentially (see Fig. 1, bottom panel) during the linear growth stage
[21,63], but this growth slows as the flame transitions into the nonlinear regime. The less dense
ash rises as bubbles and the more dense fuel sinks as spikes. The spikes have a more complex
structure when the RT instability is stronger; for example, they may resemble mushrooms (see
Fig. 1, middle panel). Finally, the fine structure on the spikes burns out and the flame becomes a
regular series of rising bubbles separated by sharp cusps (see Fig. 1, top panel) [21,22]. We call this
flame configuration the First Metastable Stage.

During the First Metastable Stage, the flame propagates upward with a constant speed, shape
and phase, that is, as a traveling wave [21,22,64]. Most properties of the First Metastable Stage
depend on the dominant primary perturbation. For example, the number of RT bubbles in the box
is equal to the primary wavenumber k1. The flame speed and cusp size depend on both k1 and G
[20]. However, the lifetime of the First Metastable Stage depends on how long it takes the secondary
perturbation (or numerical multimode noise; see Appendix A) to grow and disrupt it. This depends
on the properties of the secondary perturbation.
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FIG. 1. The Early Stage: the initial perturbation grows exponentially during the linear stage (bottom panel);
bubbles and spikes develop (middle panel); finally, the flame stabilizes as a traveling wave that we call the First
Metastable Stage (top panel). This is a single-mode simulation with k1 = 32; see the Supplemental Material
movie for run 355 [62].

For instance, the lifetime of the First Metastable Stage depends on the amplitude
of the secondary perturbation. Fixing k1 = 128, k2 = 64, we ran simulations with A2 =
0.001, 0.0005, 0.0001, 0.00005. Figure 2(a) shows how the distance between the top of the bubbles
and the bottom of the spikes (the flame depth, see Appendix B) changes with time. After growing
exponentially, the flame depth remains constant during the First Metastable Stage. Eventually, the
secondary perturbation grows large enough to couple with the primary perturbation, and the flame
depth increases again. Figure 2(a) shows that smaller secondary perturbations take longer to grow,
increasing the lifetime of the First Metastable Stage.

The lifetime of the First Metastable Stage also depends on the wavenumber of the secondary
perturbation. Setting k1 = 128, A1 = 1, A2 = 0.001 we chose k2 from the range 1 to 224 and then
measured the lifetime of the First Metastable Stage. Figure 2(b) shows that the lifetime of the
First Metastable Stage is very long (tlife > 50) when k2 is small, but rapidly drops as k2 increases,
and then varies within a band 8.7 � tlife � 15. The rapid drop in lifetime is due to the secondary
perturbation growing faster as k2 increases. This is consistent with the classical RT linear growth
rate scaling, which is proportional to

√
k. Lifetimes stabilize at higher k2 because the growth rate

of the secondary perturbation levels off. This happens because the reaction, thermal diffusion, and
viscosity all destroy the smaller-scale structures of the higher k2 perturbations more effectively,
offsetting the

√
k growth rate scaling. So, the lifetime of the First Metastable Stage does depend on

k2, but this dependence is strongest when k2 is small.
In the Early Stage, the primary saturates as a traveling wave that persists until the independently

growing secondary perturbation (or multimode noise) grows large enough to couple with it. In
this section, we showed that the secondary’s growth time depends on its initial amplitude and
wavenumber.
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FIG. 2. (a) Secondary Perturbation Amplitude Experiment: the lifetime of the First Metastable Stage
increases as A2 decreases. On the plot, the First Metastable Stage is the plateau where the flame depth remains
constant. The flame depth is measured with the point method using T = [0.005, 0.995] (see Appendix B).
(b) Secondary Perturbation Wavenumber Experiment: the lifetime of the First Metastable Stage decreases with
k2 and then stabilizes. The noise lifetime for k1 = 128 (see Appendix A) is represented by the dotted line.

B. Late Stage Flame Evolution

In the Late Stage, the primary and secondary modes couple to generate intermediate and long
wavelength modes. In this section, we will show that the final mode generated by this inverse k-
cascade is GCD(k1, k2), where GCD is the greatest common divisor. We also will explore the variety
of solutions that emerge during the inverse k-cascade, from disordered chaotic burning to structured
symmetrical evolution, and show that they depend on GCD(k1, k2).

The Late Stage begins when the primary perturbation’s First Metastable Stage is destabilized by
another perturbation, either the secondary perturbation or numerical multimode noise. We’ve shown
in Sec. III A that the lifetime of the First Metastable Stage depends on k2 and that long wavelength
secondary perturbations grow very slowly. For k2 = 1, 2 the secondary perturbation grows too
slowly to disrupt the First Metastable Stage before the numerical multimode noise kicks in. In
this Chaotic Burning solution (see Fig. 6 in Appendix C for k2 = 1), the First Metastable Stage
(Fig. 6, panel 1) is disrupted by small-scale asymmetrical bubble growth (panel 2). Here and there,
a few bubbles along the flame front randomly grow, absorbing their neighbors (panels 2 to 4). This
leads to rapid merging and growth of the bubbles (panels 5 to 8). The vertical growth of the bubble
mixing layer (measured in several ways, see Appendix B) is shown in the inset “bubble depth” plot.

Moving upward in wavenumber, a new solution type emerges at k2 = 3. Nearly Symmetric
Merging solutions feature a nearly symmetric breakup of the First Metastable Stage, but small
asymmetries are magnified before wavenumber GCD(k1, k2) structures are reached, leading to
asymmetric bubbles. We see this solution type for k2 = 3, 4 and for high k2 wavenumbers with
GCD = 1, specifically k2 = 65, 165. Figure 7 shows k2 = 65.

Continuing to higher wavenumbers, when k2 � 8, the secondary perturbation outcompetes the
multimode noise and delays the emergence of asymmetry. In these simulations, the solution type is
determined entirely by the wavenumber of the mode ultimately produced by two-mode coupling:
GCD(k1, k2). This mode divides the domain into GCD(k1, k2) equal subregions and identical
evolution takes place within each one. Bubbles are distributed evenly into the subregions and merge
until only one bubble remains per subregion. Thus, the final wavenumber is GCD(k1, k2). The details
of the merger process depend on k2 and GCD(k1, k2). If k2 = GCD(k1, k2), then k2 grows and
outcompetes k1 in a bubble-competition-like process. Smaller primary bubbles merge on the surface
of larger, faster-growing secondary bubbles. A similar bubble-competition-like process takes place
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for certain other values of k2 if a long wavelength mode is quickly generated. Although these details
of the merger process depend on k2, the solution type only depends on the GCD.

At low GCD (GCD = 2, 4) and k2 � 8, we find the First Metastable Merging solution.
In this solution type, bubbles continuously merge while keeping remarkable symmetry, despite
their vast structures and high flame speeds. For example, Fig. 8 (k2 = 210, GCD = 2) shows
smaller bubbles (panel 2) merging into larger bubbles (panels 3 to 7) and eventually forming two
massive identical structures (panel 8). At the end of the merging process, the GCD = 2 simula-
tions (k2 = 66, 90, 162, 210) form two giant identical structures, while the GCD = 4 simulations
(k2 = 12, 68, 164) form four. At very late times, multimode noise breaks the symmetry and growth
continues.

At medium GCD (GCD = 8, 16, 32), the First Metastable Pulsating solution appears. Bubbles
merge until only a GCD number of bubbles remain. These bubbles pulsate horizontally without
growing vertically as the flame burns upward. Pulsations are driven by the misalignment between the
primary First Metastable Stage and the secondary perturbation growing beneath it. When the flame
bubble or cusp does not perfectly sit atop the secondary perturbation’s crest, horizontal momentum
is introduced into the flame front. This causes the bubbles to merge and the flame wakes to pulsate.
Figure 9 shows this solution for k2 = 224 (GCD = 32). After the First Metastable Stage (panel 1)
is broken by the secondary perturbation, bubbles merge (panel 2) until 32 remain (panel 3). The
bubbles pulsate back and forth horizontally, alternately forming and burning out mushroom-like
cusps to the right and then to the left (panel 4). Finally, multimode noise disrupts the pulsating
solution (panels 5 and 6) and the merger continues to larger horizontal scales (panel 7). The GCD =
32 simulation pulsations (k2 = 32, 96, 160, 224) look simple because the k = 32 structures aren’t
large. The final structures are larger and have more complex-looking pulsations for GCD = 16
(k2 = 16, 80, 208) and GCD = 8 (k2 = 8, 72, 152).

The Second Metastable Merging solution requires the highest GCD value (GCD = 64), half of
the primary wavenumber. This solution is special because the primary and secondary modes interact
without introducing horizontal momentum. Figure 10 shows this process for k2 = 64. Exactly two
primary metastable bubbles fit within each secondary perturbation wave, so the primary bubbles will
alternate between having their upward velocity reinforced and suppressed (panel 2). The reinforced
bubbles engulf the suppressed bubbles (panels 3 and 4) and a Second Metastable Stage forms with
k = 64. The Second Metastable Stage lasts for a considerable amount of time (panels 5 to 7), gently
pulsating due to a shear instability that develops behind the flame front [59]. Finally, multimode
noise triggers chaotic burning (panels 8 and 9). The k2 = 192 simulation develops similarly, with
two primary metastable bubbles per three secondary wavelengths. Again, alternate primary bubbles
are reinforced and suppressed by the secondary perturbation.

In this subsection, we showed how different Late Stage inverse k-cascade scenarios arise from
the coupling between the primary and secondary modes. Figure 3 summarizes the distribution of
the five solutions that we identified in GCD(k1, k2) versus k2 phase space. Solutions range from
totally disordered to completely ordered. As long as the secondary mode grows quickly enough,
the solution type is determined entirely by two-mode coupling, which generates a final mode
with wavenumber GCD(k1, k2). Visually, this mode appears as a GCD number of identical bubble
structures. Whether this mode appears quickly (bubble-competition-like) or results from many
generations of bubble merger depends on k2. Ultimately, multimode noise emerges and breaks the
symmetry of the GCD subregions, causing continued bubble growth.

C. Two-Mode Coupling: Comparing Reactive, Ablative, and Classical RT

In the previous section, we showed that two-mode coupling between the primary and secondary
ultimately generates a mode with wavenumber GCD(k1, k2). Here, we compare this result to two-
mode coupling in ablative and classical RT.

Ablative RT is a close relative of reactive RT. Like reaction, ablation stabilizes linear growth at
high k [56,65–72]. Ablative RT is important in inertial confinement fusion (ICF) because it inhibits
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FIG. 3. Solution Type Phase Diagram. The solution types are Chaotic Burning (CB), Nearly Symmetric
Merging (NSM), First Metastable Merging (FMM), First Metastable Pulsating (FMP), and Second Metastable
Merging (SMM). Note that the solution type only depends on GCD(k1, k2) when k2 � 8 (i.e., on and to the
right of the dotted line).

ignition by mixing the cold, dense pellet shell into the fusion fuel. To further understand how initial
perturbations affect this mixing, Xin et al. [56] studied two-mode coupling of the ablative RT using
2D direct numerical simulations. They found that two short wavelength modes couple to generate
a long wavelength mode that dominates the flow. This new mode has a wavelength LCM(λ1, λ2)
which is equivalent to wavenumber GCD(k1, k2), our reactive RT result.

Seemingly, in contrast, many other systems are driven by a two-mode coupling mechanism that
generates the modes |k1 − k2| and k1 + k2. For example, Newman [73] uses Burgers equation to
illustrate how the generic nonlinearity uux produces these modes, leading to an inverse k-cascade.
In classical RT, Haan’s model [44] with Ofer’s nonlinear closures [48,50] (which extend the model
past the weakly nonlinear state) also generates the |k1 − k2| and k1 + k2 modes. The k1 + k2 mode
is a higher harmonic, while the |k1 − k2| mode is the start of the inverse k-cascade. As new long
wavelength modes are generated, they couple to produce even longer wavelength modes. But what
is the final mode generated by this process? As long as the noise is sufficiently small and at least
one parent mode is able to couple with each new child mode, the result is GCD(k1, k2). This is
because GCD(|k1 − k2|, k2) = GCD(k1, |k2 − k1|) = GCD(k1, k2), so repeatedly subtracting pairs
of modes will eventually result in GCD(k1, k2). In essence, this mode coupling mechanism carries
out the simplest version of Euclid’s algorithm, which finds the GCD of two numbers by repeated
subtraction.

Do ablative, reactive, and classical RT all have the same two-mode coupling dynamics? Our re-
sults show that this is a possibility—Xin’s surprising LCM(λ1, λ2) final mode and our GCD(k1, k2)
final mode are consistent with a model that, like the Haan/Ofer model, repeatedly generates new
modes with |k1 − k2|. However, the Haan/Ofer model itself does not apply to the reactive case
since Ofer’s mode saturation closures are inconsistent with our results. In particular, our results in
Secs. III A and III B show that saturated reactive modes do not continue to grow, but are able to
participate in the inverse k-cascade after saturation. Ultimately, it may be the case that ablative,
reactive and classical RT all generate new long wavelength modes by the two-mode coupling rule
|k1 − k2|, but that the nonlinear mode saturation closure is different in each case.

IV. CONCLUSIONS

In this paper, we investigated how long wavelength modes develop in reactive RT. We focused
on two-mode coupling, the dominant modal interaction in both classical and ablative RT. Our main
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goals were to determine which long wavelength modes are generated, if any, and what happens
to the flame physically during the inverse k-cascade. We simulated a 2D Boussinesq model flame
with two perturbations: a large amplitude primary and a small secondary. We also considered the
role of numerical multimode noise. We divide the flame’s evolution into two stages depending on
whether or not the modes couple. In the Early Stage, the modes grow independently. The lifetime
of the primary’s First Metastable Stage depends on the secondary perturbation’s initial amplitude
and wavenumber. In the Late Stage, the primary and secondary modes couple to ultimately generate
a long wavelength mode with wavenumber GCD(k1, k2). The flame’s behavior during this inverse
k-cascade depends on GCD(k1, k2). We identified five solution types with various flame dynamics:
the flame may be chaotic (if its evolution is dominated by numerical noise), may grow with a slight
asymmetry, may symmetrically grow, may coherently pulsate, or may even become metastable
again. Of these solutions, the pulsating and second metastable solutions demonstrate how adding
a reaction can temporarily stabilize the growth of the mixing layer, an effect not found in classical
RT. Finally, we showed that the reactive RT follows a similar coupling dynamic to ablative RT since
both produce modes with GCD(k1, k2). We also showed that ablative, reactive, and classical RT
may all have the same two-mode coupling dynamics: an inverse k-cascade driven by the generation
of new modes with |k1 − k2|. However, the nonlinear mode saturation closure must be different for
reactive and classical RT. Ultimately, this work is the first step toward understanding how a reaction
modifies the RT bubble merger process and how the mixing layer in reactive RT ultimately becomes
self-similar.

The supporting data and code for this article are openly available on Zenodo [74].
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APPENDIX A: RESOLUTION CHECKS

In this Appendix, we discuss the effect of numerical errors in our simulations and how we
controlled these errors in our study design. We begin by describing the types of numerical error.
Next, we explain how we used single-mode simulations and resolution studies to choose parameter
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FIG. 4. (a) Single-Mode Simulations: the First Metastable Stage is eventually disrupted by numerical mul-
timode noise. The flame depth is measured with the point method using T = [0.005, 0.995] (see Appendix B).
(b) Noise Lifetimes: the amount of time that the First Metastable Stage survives before it is disrupted by noise.

values for our two-mode study. Finally, we carefully consider the role of numerical multimode noise
in our two-mode simulations.

1. Types of Numerical Error

The effect of numerical errors in our simulations can be broken into two components: a
single-mode “system” perturbation and a multimode noise perturbation. The system perturbation
is generated by an interaction between the primary perturbation and the Nek5000 spectral element
mesh. If the wavelength of the primary perturbation is not evenly divided by the spectral element
size, then the pattern of spectral coefficients repeats on the smallest scale for which the flame front
pattern is exactly divided by a whole number of spectral elements. This produces a long wavelength
system perturbation with wavenumber GCD(k1, nelx), where nelx = 512 is the number of elements
in the x-direction. The second type of numerical perturbation is multimode noise. Both types of
perturbation grow with time. In the next two sections, we will examine the effect of these numerical
perturbations on both single-mode and two-mode simulations.

2. Single-Mode Simulations and Resolution Checks

In this section, we show that single-mode simulations behave nicely with improved resolution.
The resolution studies guide our choice of an appropriate primary wavenumber and simulation
resolution for our two-mode study. We also measure the “noise lifetime” for our chosen k1, A1,
and resolution.

First, we show that the lifetime of the First Metastable Stage increases as the resolution is
improved. In an ideal single-mode simulation with no numerical error, we would expect the
lifetime of the First Metastable Stage to be infinite. However, even in a well-resolved single-mode
simulation, the First Metastable Stage is eventually destroyed by numerical multimode noise.
Figure 4(a) shows the development of the First Metastable Stage and its destruction by noise for a
variety of single-mode wavenumbers (k1). Measured lifetimes are shown in Fig. 4(b). These “noise
lifetimes” are the longest first metastable lifetimes that can be measured for each combination of
resolution, k1, and A1. The noise lifetime for k1 = 128 will be used in the next section to select
an appropriate value for A2. The noise lifetime should increase as the resolution is improved.
Figure 5(a) demonstrates this good behavior using k1 = 208 as an example: the First Metastable
Stage plateau is longer when the resolution is better. Based on this resolution study, we decided to
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FIG. 5. (a) Single-Mode Resolution Study (k1 = 208): the noise lifetime increases as the resolution is
improved. (b) Two-Mode Resolution Study (k1 = 128, k2 = 64): the duration of the First Metastable Stage and
the transition to and development of the Second Metastable Stage are well converged. The Second Metastable
Stage is broken by numerical multimode noise.

resolve the simulations as much as we could to allow the secondary perturbation more time to grow.
Our chosen average resolution (0.444) is smaller than the measured viscous scale, implying that
the simulations capture the energy cascade. The flame front itself should also be resolved because
there are nearly 10 collocation (grid mesh) points across the distance (4.394) between the T = 0.1
and T = 0.9 contours of the laminar flame.

Second, we confirmed that the effect of the system perturbation disappears as the resolution is
improved. When single-mode simulations are underresolved, the system perturbation mimics the
effect of a secondary perturbation. Organized, large-scale structures emerge which are entirely due
to numerical error. As the resolution improves, these structures disappear, showing that the am-
plitude of the system perturbation decreases. At our highest resolution, the system perturbation has
little effect. However, we eliminate the system perturbation entirely in our two-mode simulations by
choosing k1 = 128, which aligns the bubbles of the flame front perfectly with the spectral elements.

3. Two-Mode Simulations and Numerical Multimode Noise

In this paper, we made the choice to show and discuss all of our two-mode simulations, even
when they are affected by numerical multimode noise. Our hope is that this additional transparency
will help future researchers in this area to plan and interpret their own simulations. In this section, we
expand on the discussion in the main body of the paper and carefully consider the role of numerical
multimode noise in our simulations.

First, we needed to ensure that the secondary perturbation actually played a role in breaking
the First Metastable Stage and that we weren’t just measuring the effects of numerical multimode
noise. We did this by choosing A2 appropriately. A2 must be large enough that the lifetime of
the First Metastable Stage of the simulation with the slowest growing secondary perturbation
(k2 = 1) is shorter than the noise lifetime of the primary perturbation, k1 = 128. We chose A2 =
0.001 because the lifetime of the First Metastable Stage of k2 = 1 is slightly less than the noise
lifetime [see Fig. 2(b)]. This choice allowed us to explore the full range of possible solutions from
noise-dominated to secondary-perturbation-dominated by increasing k2 (see Sec. III B).

Next, we identified the values of k2 for which the First Metastable Stage is broken by true two-
mode coupling between the primary and secondary. In Sec. III B, we show that the secondary out-
competes numerical multimode noise and breaks the First Metastable Stage on its own when k2 � 8.
This is visually apparent for simulations with GCD(k1 = 128, k2) � 2 that break up symmetrically.
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Finally, we checked that the evolution of the k2 � 8 simulations continued to be dominated by
two-mode coupling until a GCD number of structures developed. Visually, the simulations must
maintain symmetry until GCD identical structures develop. For example, Fig. 8 shows that the
k2 = 210 (GCD = 2) simulation maintains symmetry until two giant structures form.

After GCD identical structures form, symmetry will eventually be broken by the slowly growing
numerical multimode noise. Figure 9 shows this process for k2 = 224 (GCD = 32). After 32
structures form (panel 4), the inverse k-cascade driven by two-mode coupling between the primary
and secondary is complete. The symmetry breaking shown in panels 5 to 7 is due to numeri-
cal multimode noise and is not physical. Likewise, Fig. 10 for k2 = 64 (GCD = 64) shows the
development of 64 identical bubbles which persist for some time before symmetry is broken by
multimode noise in panels 8 and 9. Figure 5(b) shows a resolution study for this case. The duration
of the First Metastable Stage and the transition to and development of the Second Metastable Stage
are well converged. The duration of the Second Metastable Stage does depend on resolution because
the Second Metastable Stage is broken by numerical multimode noise instead of by a real physical
perturbation.

Ultimately, multimode noise affects simulations differently depending on their value of k2.
When k2 < 8, multimode noise competes with the secondary perturbation and plays a role in
breaking the First Metastable Stage. If these simulations could be carried out at higher resolution,
we would expect the k2 = 1 simulation to converge to the Nearly Symmetric Merging solution
type and simulations with k2 = 2, 4, 6 to converge to the First Metastable Merging solution
type. These simulations are unphysical in the sense that they show behavior that is not due to
two-mode coupling, but their sort of asymmetrical behavior is likely in the real world where
noisy multimode perturbations are ubiquitous. For simulations with k2 � 8, the solution type
is converged. Simulations with GCD � 2 remain symmetric until a GCD number of identical
structures develop. Eventually, multimode noise breaks this symmetry. Increasing the resolution
of these simulations would likely delay the symmetry breaking, but would not change the solution
type. Simulations with GCD = 1 always appear asymmetrical, but they are still converged (to the
Nearly Symmetric Merging solution) as long as k2 � 8. Overall, solution types for k2 � 8 are
converged and our conclusions about two-mode coupling are robust.

APPENDIX B: FLAME DEPTH AND BUBBLE DEPTH MEASUREMENTS

During the development of the Rayleigh-Taylor instability, distinctive structures known as
bubbles and spikes form on the flame front. Bubbles are lighter ashes moving upward, while spikes
are heavier fuels moving downward. To quantify the growth of these structures, we measure the
positions of the top of the bubbles and the bottom of the spikes using two methods: the point
method and the profile method. Both methods use temperature thresholds, for example T =
(0.1, 0.9), to define the top and bottom of the flame. The flame top corresponds to the highest point
with temperature above the lower threshold, whereas the flame bottom corresponds to the lowest
point with temperature below the upper threshold. The point method uses the vertical position of
the single point that meets these criteria; the profile method first calculates the horizontal average of
the temperature field and then identifies the vertical position that satisfies the thresholds.

To turn these measurements into mixing layer height measurements, we take two approaches.
First, we compute the size of the entire mixing layer by subtracting the spike position from the
bubble position. This measurement includes both bubbles and spikes and we call it the flame depth.
We also measure a bubble depth that excludes the spikes by subtracting the average position for
the flame (calculated by integrating the flame speed over time) from the bubble position. The
insets in Figs. 6–10 show measurements of the bubble depth made using both the point and profile
methods across the three threshold sets: T = (0.1, 0.9), (0.05, 0.95), and (0.005, 0.995), denoted,
respectively, by numbers 1, 2, and 3 in the plot legends. The profile method measurements are
labeled by the letter ‘p’ in front of the number.

113203-11



MINGXUAN LIU AND ELIZABETH P. HICKS

APPENDIX C: LATE STAGE SOLUTION VISUALIZATIONS

Examples of the flame evolution for all solutions types discussed in Sec. III B are shown in
Figs. 6–10.

FIG. 6. Chaotic Burning Solution (k1 = 128, k2 = 1, GCD = 1). See Supplemental Material movie for run
316 [62].
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FIG. 7. Nearly Symmetric Merging Solution (k1 = 128, k2 = 65, GCD = 1). See Supplemental Material
movie for run 322 [62].
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FIG. 8. First Metastable Merging Solution (k1 = 128, k2 = 210, GCD = 2). See Supplemental Material
movie for run 337 [62].
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FIG. 9. First Metastable Pulsating Solution (k1 = 128, k2 = 224, GCD = 32). See Supplemental Material
movie for run 347 [62].
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FIG. 10. Second Metastable Merging Solution (k1 = 128, k2 = 64, GCD = 64). See Supplemental Mate-
rial movie for run 315 [62].

113203-16



RAYLEIGH-TAYLOR UNSTABLE FLAMES: THE EFFECT …

[1] L. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable
density, Proc. London Math. Soc. 14, 170 (1883).

[2] G. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes.
I, Proc. R. Soc. London, Ser. A 201, 192 (1950).

[3] D. Sharp, An overview of Rayleigh-Taylor instability, Physica D 12, 3 (1984).
[4] V. Bychkov, M. Modestov, V. Akkerman, and L.-E. Eriksson, The Rayleigh–Taylor instability in inertial

fusion, astrophysical plasma and flames, Plasma Phys. Controlled Fusion 49, B513 (2007).
[5] M. J. Andrews and S. B. Dalziel, Small Atwood number Rayleigh–Taylor experiments, Philos. Trans. R.

Soc. A 368, 1663 (2010).
[6] S. I. Anisimov, R. P. Drake, S. Gauthier, E. E. Meshkov, and S. I. Abarzhi, What is certain and what is not

so certain in our knowledge of Rayleigh–Taylor mixing? Philos. Trans. R. Soc. A 371, 20130266 (2013).
[7] D. Livescu, Numerical simulations of two-fluid turbulent mixing at large density ratios and applications

to the Rayleigh-Taylor instability, Philos. Trans. R. Soc. A 371, 20120185 (2013).
[8] G. Boffetta and A. Mazzino, Incompressible Rayleigh–Taylor turbulence, Annu. Rev. Fluid Mech. 49,

119 (2017).
[9] Y. Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I,

Phys. Rep. 720-722, 1 (2017).
[10] Y. Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II,

Phys. Rep. 723-725, 1 (2017).
[11] Y. Zhou, T. T. Clark, D. S. Clark, S. Gail Glendinning, M. Aaron Skinner, C. M. Huntington, O. A.

Hurricane, A. M. Dimits, and B. A. Remington, Turbulent mixing and transition criteria of flows induced
by hydrodynamic instabilities, Phys. Plasmas 26, 080901 (2019).

[12] A. Banerjee, Rayleigh-Taylor instability: A status review of experimental designs and measurement
diagnostics, J. Fluids Eng. 142, 120801 (2020).

[13] D. Livescu, Turbulence with large thermal and compositional density variations, Annu. Rev. Fluid Mech.
52, 309 (2020).

[14] O. Schilling, Progress on understanding Rayleigh–Taylor flow and mixing using synergy between simu-
lation, modeling, and experiment, J. Fluids Eng. 142, 120802 (2020).

[15] Y. Zhou, R. J. Williams, P. Ramaprabhu, M. Groom, B. Thornber, A. Hillier, W. Mostert, B. Rollin,
S. Balachandar, P. D. Powell, A. Mahalov, and N. Attal, Rayleigh–Taylor and Richtmyer–Meshkov
instabilities: A journey through scales, Physica D 423, 132838 (2021).

[16] J. J. Hester, J. M. Stone, P. A. Scowen, B.-I. Jun, J. S. Gallagher III, M. L. Norman, G. E. Ballester, C. J.
Burrows, S. Casertano, J. T. Clarke et al., WFPC2 studies of the Crab Nebula. III. Magnetic Rayleigh-
Taylor instabilities and the origin of the filaments, Astrophys. J. 456, 225 (1996).

[17] O. Porth, S. S. Komissarov, and R. Keppens, Rayleigh–Taylor instability in magnetohydrodynamic
simulations of the Crab nebula, Mon. Not. R. Astron. Soc. 443, 547 (2014).

[18] H. Shinagawa, H. Jin, Y. Miyoshi, H. Fujiwara, T. Yokoyama, and Y. Otsuka, Daily and seasonal variations
in the linear growth rate of the Rayleigh-Taylor instability in the ionosphere obtained with GAIA,
Prog. Earth Planet. Sci. 5, 16 (2018).

[19] A. Khokhlov, Supernovae deflagrations in three dimensions, Astrophys. J. 424, L115 (1994).
[20] A. M. Khokhlov, Propagation of turbulent flames in supernovae, Astrophys. J. 449, 695 (1995).
[21] N. Vladimirova and R. Rosner, Model flames in the Boussinesq limit: The effects of feedback, Phys. Rev.

E 67, 066305 (2003).
[22] N. Vladimirova and R. Rosner, Model flames in the Boussinesq limit: The case of pulsating fronts,

Phys. Rev. E 71, 067303 (2005).
[23] J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, and M. Zingale, Direct numerical simulations of

Type Ia supernovae flames. II. The Rayleigh-Taylor instability, Astrophys. J. 608, 883 (2004).
[24] M. Zingale, S. E. Woosley, C. A. Rendleman, M. S. Day, and J. B. Bell, Three-dimensional numerical

simulations of Rayleigh-Taylor unstable flames in Type Ia supernovae, Astrophys. J. 632, 1021 (2005).
[25] J. Zhang, O. E. Bronson Messer, A. M. Khokhlov, and T. Plewa, On the evolution of thermonuclear flames

on large scales, Astrophys. J. 656, 347 (2007).

113203-17

https://doi.org/10.1112/plms/s1-14.1.170
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1016/0167-2789(84)90510-4
https://doi.org/10.1088/0741-3335/49/12B/S49
https://doi.org/10.1098/rsta.2010.0007
https://doi.org/10.1098/rsta.2013.0266
https://doi.org/10.1098/rsta.2012.0185
https://doi.org/10.1146/annurev-fluid-010816-060111
https://doi.org/10.1016/j.physrep.2017.07.005
https://doi.org/10.1016/j.physrep.2017.07.008
https://doi.org/10.1063/1.5088745
https://doi.org/10.1115/1.4048349
https://doi.org/10.1146/annurev-fluid-010719-060114
https://doi.org/10.1115/1.4048518
https://doi.org/10.1016/j.physd.2020.132838
https://doi.org/10.1086/176643
https://doi.org/10.1093/mnras/stu1082
https://doi.org/10.1186/s40645-018-0175-8
https://doi.org/10.1086/187288
https://doi.org/10.1086/176091
https://doi.org/10.1103/PhysRevE.67.066305
https://doi.org/10.1103/PhysRevE.71.067303
https://doi.org/10.1086/420841
https://doi.org/10.1086/433164
https://doi.org/10.1086/510145


MINGXUAN LIU AND ELIZABETH P. HICKS

[26] M. Chertkov, V. Lebedev, and N. Vladimirova, Reactive Rayleigh-Taylor turbulence, J. Fluid Mech. 633,
1 (2009).

[27] L. Biferale, F. Mantovani, M. Sbragaglia, A. Scagliarini, F. Toschi, and R. Tripiccione, Reactive Rayleigh-
Taylor systems: Front propagation and non-stationarity, Europhys. Lett. 94, 54004 (2011).

[28] E. P. Hicks and R. Rosner, Gravitationally unstable flames: Rayleigh-Taylor stretching versus turbulent
wrinkling, Astrophys. J. 771, 135 (2013).

[29] E. P. Hicks, Rayleigh-Taylor unstable flames – fast or faster? Astrophys. J. 803, 72 (2015).
[30] E. P. Hicks, Rayleigh–Taylor unstable flames at higher Reynolds number, Mon. Not. R. Astron. Soc. 489,

36 (2019).
[31] F. Ciaraldi-Schoolmann, W. Schmidt, J. C. Niemeyer, F. K. Röpke, and W. Hillebrandt, Turbulence in

a three-dimensional deflagration model for Type Ia supernovae. I. Scaling properties, Astrophys. J. 696,
1491 (2009).

[32] B. Hristov, D. C. Collins, P. Hoeflich, C. A. Weatherford, and T. R. Diamond, Magnetohydrodynamical
effects on nuclear deflagration fronts in Type Ia supernovae, Astrophys. J. 858, 13 (2018).

[33] G. D. Lewis, Combustion in a centrifugal-force field, Symposium (International) Combustion 13, 625
(1971).

[34] G. D. Lewis, Centrifugal-force effects on combustion, Symposium (International) on Combustion 14, 413
(1973).

[35] G. D. Lewis and C. E. Smith, Investigation of Centrifugal Force and Reynolds Number Effects on
Combustion Processes, Tech. Rep. (Pratt and Whitney Aircraft Research, West Palm Beach, Florida,
1975).

[36] A. P. Lapsa and W. J. Dahm, Hyperacceleration effects on turbulent combustion in premixed step-
stabilized flames, Proc. Combust. Inst. 32, 1731 (2009).

[37] A. M. Briones, B. Sekar, and T. Erdmann, Effect of centrifugal force on turbulent premixed flames,
J. Eng. Gas Turbines Power 137, 011501 (2014).

[38] T. J. Erdmann, A. W. Caswell, and E. Gutmark, Experimental study of the impact of high centrifugal body
forces on constant pressure, propane-air flames, in AIAA Scitech 2019 Forum (2019), https://arc.aiaa.org/
doi/pdf/10.2514/6.2019-0734

[39] J. Sykes, T. Gallagher, and B. A. Rankin, Numerical design of an experiment to investigate Rayleigh-
Taylor instabilities in reacting flows, in AIAA Scitech 2019 Forum (2019), https://arc.aiaa.org/doi/pdf/10.
2514/6.2019-2142

[40] J. P. Sykes, T. P. Gallagher, and B. A. Rankin, Effects of Rayleigh-Taylor instabilities on turbulent
premixed flames in a curved rectangular duct, Proc. Combust. Inst. 38, 6059 (2021).

[41] T. J. Erdmann, E. J. Gutmark, and A. W. Caswell, The Effects of High Centrifugal Acceleration on Bluff-
Body Stabilized Premixed Flames, J. Eng. Gas Turbines Power 145, 031004 (2023).

[42] G. Birkhoff, Taylor Instability and Laminar Mixing, Tech. Rep. LA-1862 (Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 1955).

[43] S. W. Haan, Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum
of modes, Phys. Rev. A 39, 5812 (1989).

[44] S. W. Haan, Weakly nonlinear hydrodynamic instabilities in inertial fusion, Phys. Fluids B 3, 2349 (1991).
[45] U. Alon, D. Shvarts, and D. Mukamel, Scale-invariant regime in Rayleigh-Taylor bubble-front dynamics,

Phys. Rev. E 48, 1008 (1993).
[46] U. Alon, J. Hecht, D. Mukamel, and D. Shvarts, Scale invariant mixing rates of hydrodynamically unstable

interfaces, Phys. Rev. Lett. 72, 2867 (1994).
[47] U. Alon, J. Hecht, D. Ofer, and D. Shvarts, Power laws and similarity of rayleigh-taylor and richtmyer-

meshkov mixing fronts at all density ratios, Phys. Rev. Lett. 74, 534 (1995).
[48] D. Shvarts, U. Alon, D. Ofer, R. L. McCrory, and C. P. Verdon, Nonlinear evolution of multimode

Rayleigh–Taylor instability in two and three dimensions, Phys. Plasmas 2, 2465 (1995).
[49] M. J. Dunning and S. W. Haan, Analysis of weakly nonlinear three-dimensional Rayleigh–Taylor insta-

bility growth, Phys. Plasmas 2, 1669 (1995).
[50] D. Ofer, U. Alon, D. Shvarts, R. L. McCrory, and C. P. Verdon, Modal model for the nonlinear multimode

Rayleigh–Taylor instability, Phys. Plasmas 3, 3073 (1996).

113203-18

https://doi.org/10.1017/S0022112009007666
https://doi.org/10.1209/0295-5075/94/54004
https://doi.org/10.1088/0004-637X/771/2/135
https://doi.org/10.1088/0004-637X/803/2/72
https://doi.org/10.1093/mnras/stz2080
https://doi.org/10.1088/0004-637X/696/2/1491
https://doi.org/10.3847/1538-4357/aab7f2
https://doi.org/10.1016/S0082-0784(71)80064-4
https://doi.org/10.1016/S0082-0784(73)80040-2
https://doi.org/10.1016/j.proci.2008.05.038
https://doi.org/10.1115/1.4028057
https://arc.aiaa.org/doi/pdf/10.2514/6.2019-0734
https://arc.aiaa.org/doi/pdf/10.2514/6.2019-2142
https://doi.org/10.1016/j.proci.2020.06.146
https://doi.org/10.1115/1.4055871
https://doi.org/10.1103/PhysRevA.39.5812
https://doi.org/10.1063/1.859603
https://doi.org/10.1103/PhysRevE.48.1008
https://doi.org/10.1103/PhysRevLett.72.2867
https://doi.org/10.1103/PhysRevLett.74.534
https://doi.org/10.1063/1.871476
https://doi.org/10.1063/1.871316
https://doi.org/10.1063/1.871655


RAYLEIGH-TAYLOR UNSTABLE FLAMES: THE EFFECT …

[51] D. Oron, L. Arazi, D. Kartoon, A. Rikanati, U. Alon, and D. Shvarts, Dimensionality dependence of
the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws, Phys. Plasmas 8, 2883
(2001).

[52] B. Cheng, J. Glimm, and D. H. Sharp, A three-dimensional renormalization group bubble merger model
for Rayleigh–Taylor mixing, Chaos: An Interdisciplinary J. Non. Sci. 12, 267 (2002).

[53] G. Dimonte, Dependence of turbulent Rayleigh-Taylor instability on initial perturbations, Phys. Rev. E
69, 056305 (2004).

[54] G. Dimonte, P. Ramaprabhu, D. L. Youngs, M. J. Andrews, and R. Rosner, Recent advances in the
turbulent Rayleigh–Taylor instability, Phys. Plasmas 12, 056301 (2005).

[55] K. Ley, O. Soulard, J. Griffond, A. Briard, and S. Simoëns, Reactive Rayleigh-Taylor turbulence:
Influence of mixing on the growth and displacement of the mixing zone, Phys. Rev. Fluids 9, 074609
(2024).

[56] J. Xin, R. Yan, Z.-H. Wan, D.-J. Sun, J. Zheng, H. Zhang, H. Aluie, and R. Betti, Two mode coupling of
the ablative Rayleigh-Taylor instabilities, Phys. Plasmas 26, 032703 (2019).

[57] E. Spiegel and G. Veronis, On the Boussinesq approximation for a compressible fluid, Astrophys. J. 131,
442 (1960).

[58] N. Vladimirova, V. G. Weirs, and L. Ryzhik, Flame capturing with an advection-reaction-diffusion model,
Combust. Theory Model. 10, 727 (2006).

[59] E. P. Hicks, A shear instability mechanism for the pulsations of Rayleigh–Taylor unstable model flames,
J. Fluid Mech. 748, 618 (2014).

[60] P. Constantin, A. Kiselev, and L. Ryzhik, Fronts in reactive convection: Bounds, stability, and instability,
Commun. Pure Appl. Math. 56, 1781 (2003).

[61] NEK5000 Version SVN r1041, Argonne National Laboratory, Illinois. Available: https://nek5000.mcs.
anl.gov.

[62] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.9.113203 for
videos of the temperature field for all simulations.

[63] Y. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The mathematical theory
of combustion and explosions, in The Mathematical Theory of Combustion and Explosions (Consultants
Bureau, New York and London, 1985).

[64] A. Bayliss, B. J. Matkowsky, C. W. Wahle, and T. K. Ma, The Reactive Rayleigh–Bénard Problem with
Throughflow, SIAM J. Appl. Math. 61, 1103 (2001).

[65] H. Takabe and A. Yamamoto, Reduction of turbulent mixing at the ablation front of fusion targets,
Phys. Rev. A 44, 5142 (1991).

[66] R. Betti and J. Sanz, Bubble acceleration in the ablative Rayleigh-Taylor instability, Phys. Rev. Lett. 97,
205002 (2006).

[67] A. Casner, L. Masse, S. Liberatore, P. Loiseau, P. E. Masson-Laborde, L. Jacquet, D. Martinez, A. S.
Moore, R. Seugling, S. Felker, S. W. Haan, B. A. Remington, V. A. Smalyuk, M. Farrell, E. Giraldez, and
A. Nikroo, Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive
experiments on the National Ignition Facility, Phys. Plasmas 22, 056302 (2015).

[68] D. A. Martinez, V. A. Smalyuk, J. O. Kane, A. Casner, S. Liberatore, and L. P. Masse, Evidence for a
bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the
NIF, Phys. Rev. Lett. 114, 215004 (2015).

[69] R. Yan, R. Betti, J. Sanz, H. Aluie, B. Liu, and A. Frank, Three-dimensional single-mode nonlinear
ablative Rayleigh-Taylor instability, Phys. Plasmas 23, 022701 (2016).

[70] H. Zhang, R. Betti, R. Yan, D. Zhao, D. Shvarts, and H. Aluie, Self-similar multimode bubble-front
evolution of the ablative Rayleigh-Taylor instability in two and three dimensions, Phys. Rev. Lett. 121,
185002 (2018).

[71] H. Zhang, R. Betti, V. Gopalaswamy, R. Yan, and H. Aluie, Nonlinear excitation of the ablative Rayleigh-
Taylor instability for all wave numbers, Phys. Rev. E 97, 011203(R) (2018).

[72] B. A. Remington, H.-S. Park, D. T. Casey, R. M. Cavallo, D. S. Clark, C. M. Huntington, D. H.
Kalantar, C. C. Kuranz, A. R. Miles, S. R. Nagel, K. S. Raman, C. E. Wehrenberg, and V. A. Smalyuk,

113203-19

https://doi.org/10.1063/1.1362529
https://doi.org/10.1063/1.1460942
https://doi.org/10.1103/PhysRevE.69.056305
https://doi.org/10.1063/1.1871952
https://doi.org/10.1103/PhysRevFluids.9.074609
https://doi.org/10.1063/1.5070103
https://doi.org/10.1086/146849
https://doi.org/10.1080/13647830500464146
https://doi.org/10.1017/jfm.2014.198
https://doi.org/10.1002/cpa.10110
https://nek5000.mcs.anl.gov
http://link.aps.org/supplemental/10.1103/PhysRevFluids.9.113203
https://doi.org/10.1137/S0036139998347858
https://doi.org/10.1103/PhysRevA.44.5142
https://doi.org/10.1103/PhysRevLett.97.205002
https://doi.org/10.1063/1.4918356
https://doi.org/10.1103/PhysRevLett.114.215004
https://doi.org/10.1063/1.4940917
https://doi.org/10.1103/PhysRevLett.121.185002
https://doi.org/10.1103/PhysRevE.97.011203


MINGXUAN LIU AND ELIZABETH P. HICKS

Rayleigh–Taylor instabilities in high-energy density settings on the National Ignition Facility, Proc. Natl.
Acad. Sci. USA 116, 18233 (2019).

[73] W. I. Newman, Inverse cascade via Burgers equation, Chaos: An Interdisciplinary J. Non. Sci. 10, 393
(2000).

[74] M. Liu and E. P. Hicks, Rayleigh-Taylor Unstable Flames: The Effect of Two-Mode Coupling (Code and
Data Release), Zenodo (2024), https://doi.org/10.5281/zenodo.13750992.

[75] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka,
G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, XSEDE: Accelerating scientific discovery,
Comput. Sci. Eng. 16, 62 (2014).

[76] T. J. Boerner, S. Deems, T. R. Furlani, S. L. Knuth, and J. Towns, ACCESS: Advancing Innovation: NSF’s
Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support, in Practice and Experience
in Advanced Research Computing, PEARC ’23 (Association for Computing Machinery, New York, NY,
USA, 2023), pp. 173–176.

[77] http://www.tacc.utexas.edu
[78] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller, C. Harrison,

G. H. Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel, M. Durant,
J. M. Favre, and P. Navrátil, VisIt: An end-user tool for visualizing and analyzing very large data, in
High Performance Visualization–Enabling Extreme-Scale Scientific Insight (CRC Press, Taylor & Francis
Group, Boca Raton, FL, 2012), pp. 357–372.

[79] J. D. Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Eng. 9, 90 (2007).
[80] T. A. Caswell, A. Lee, M. Droettboom, E. S. de Andrade, T. Hoffmann, J. Klymak, J. Hunter, E. Firing,

D. Stansby, N. Varoquaux, J. H. Nielsen, B. Root, R. May, P. Elson, J. K. Seppänen, D. Dale, J.-J. Lee,
D. McDougall, A. Straw, P. Hobson, hannah, O. Gustafsson, C. Gohlke, A. F. Vincent, T. S. Yu, E. Ma,
G. Lucas, S. Silvester, C. Moad, and N. Kniazev, Matplotlib/matplotlib: REL: V3.5.3, Zenodo (2022),
https://doi.org/10.5281/zenodo.6982547.

[81] M. L. Waskom, Seaborn: Statistical data visualization, J. Open Source Software 6, 3021 (2021).
[82] T. Williams, C. Kelley, and many others, Gnuplot 5.2: An interactive plotting program.
[83] Poetry v1.2.0, https://github.com/python-poetry/poetry.
[84] W. McKinney, Data Structures for Statistical Computing in Python, in Proceedings of the 9th Python in

Science Conference, edited by S. van der Walt and J. Millman (Austin, TX, 2010), pp. 56–61.
[85] J. Reback, jbrockmendel, W. McKinney, J. V. den Bossche, M. Roeschke, T. Augspurger, S. Hawkins,

P. Cloud, gfyoung, P. Hoefler, Sinhrks, A. Klein, T. Petersen, J. Tratner, C. She, W. Ayd, R. Shadrach,
S. Naveh, M. Garcia, J. Darbyshire, J. Schendel, T. Wörtwein, A. Hayden, D. Saxton, M. E. Gorelli, F.
Li, M. Zeitlin, V. Jancauskas, A. McMaster, and T. Li, Pandas-dev/pandas: Pandas 1.4.4, Zenodo (2022),
https://doi.org/10.5281/zenodo.7037953.

[86] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J.
Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi,
C. Gohlke, and T. E. Oliphant, Array programming with NumPy, Nature (London) 585, 357 (2020).

[87] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P.
Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas,
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